Skip to content

photometric_confidence & IndexError: min(): Expected reduction dim 0 to have non-zero size. #104

@iszhihao

Description

@iszhihao

Hello, I use other pre-trained MVSNet models to generate depth maps and confidence values. However, the confidence values generated on the NerfSynth and TankandTemple datasets are all the same, as shown below.
photometric_confidence
tensor([[[0.1250, 0.1250, 0.1250, ..., 0.1250, 0.1250, 0.1250],
[0.1250, 0.1250, 0.1250, ..., 0.1250, 0.1250, 0.1250],
[0.1250, 0.1250, 0.1250, ..., 0.1250, 0.1250, 0.1250],
...,
Do you know how to resolve this issue? Here is the error message I received:
xyz_world_all torch.Size([0, 3]) torch.Size([0, 1]) torch.Size([0])
%%%%%%%%%%%%% getattr(dataset, spacemin, None) None
vishull_mask torch.Size([0])
alpha masking xyz_world_all torch.Size([0, 3]) torch.Size([0, 1])
Traceback (most recent call last):
File "/cluster/hebut/PointNeRF-v5/run/train_ft_nonstop.py", line 1109, in
main()
File "/cluster/hebut/PointNeRF-v5/run/train_ft_nonstop.py", line 653, in main
points_xyz_all, points_embedding_all, points_color_all, points_dir_all, points_conf_all, img_lst, c2ws_lst, w2cs_lst, intrinsics_all, HDWD_lst = gen_points_filter_embeddings(train_dataset, visualizer, opt)
File "/cluster/hebut/PointNeRF-v5/run/train_ft_nonstop.py", line 147, in gen_points_filter_embeddings
xyz_world_all, sparse_grid_idx, sampled_pnt_idx = mvs_utils.construct_vox_points_closest(xyz_world_all.cuda() if len(xyz_world_all) < 99999999 else xyz_world_all[::(len(xyz_world_all)//99999999+1),...].cuda(), opt.vox_res)
File "/cluster/hebut/PointNeRF-v5/run/../models/mvs/mvs_utils.py", line 541, in construct_vox_points_closest
xyz_min, xyz_max = torch.min(xyz, dim=-2)[0], torch.max(xyz, dim=-2)[0]
IndexError: min(): Expected reduction dim 0 to have non-zero size.
end loading

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions