██╗ ██╗███████╗ ██████╗████████╗ ██████╗ ██████╗
██║ ██║██╔════╝██╔════╝╚══██╔══╝██╔═══██╗██╔══██╗
███████║█████╗ ██║ ██║ ██║ ██║██████╔╝
██╔══██║██╔══╝ ██║ ██║ ██║ ██║██╔══██╗
██║ ██║███████╗╚██████╗ ██║ ╚██████╔╝██║ ██║
╚═╝ ╚═╝╚══════╝ ╚═════╝ ╚═╝ ╚═════╝ ╚═╝ ╚═╝
Config-first A2A-Native Agent Platform
Deploy observable, secure, and scalable AI agents with zero-config or YAML, plus a programmatic API.
📚 Documentation | CLI Reference | Config Reference
go install github.com/kadirpekel/hector/cmd/hector@latest
export OPENAI_API_KEY="sk-..."
hector serve --model gpt-4o --toolsRAG in one command (with MCP parsing optional):
hector serve \
--model gpt-4o \
--docs-folder ./documents \
--mcp-url http://localhost:8000/mcp \
--mcp-parser-tool convert_document_into_docling_documentcat > config.yaml <<'EOF'
version: "2"
llms:
default:
provider: openai
model: gpt-4o
api_key: ${OPENAI_API_KEY}
agents:
assistant:
llm: default
tools: [search]
server:
port: 8080
EOF
hector serve --config config.yaml- Config-first & zero-config: YAML for repeatability; flags for fast starts. JSON Schema available via
hector schema. - Programmatic API: Build agents in Go (
pkg/api.go), including sub-agents and agent-as-tool patterns. - RAG & MCP: Folder-based document stores, embedded vector search (chromem), optional MCP parsing chain.
- Persistence: Tasks and sessions can use in-memory or SQL backends (sqlite/postgres/mysql via DSN).
- Observability: Metrics endpoint and OTLP tracing options.
- Checkpointing: Optional checkpoint/recovery strategies.
- Auth: JWT/JWKS support at the server layer.
- A2A-native: Uses a2a-go types and JSON-RPC/gRPC endpoints.
AGPL-3.0 (see LICENSE).